Rat white adipocytes activate p85/p110 PI3K and induce PM GLUT4 in response to adrenoceptor agonists or aluminum fluoride.

نویسندگان

  • Y Ohsaka
  • Y Nomura
چکیده

Adipocyte responses to adrenergic and ß-adrenoceptor(-AR) (adrenoceptor) regulation are not sufficiently understood, and information helpful for elucidating the adrenoceptor-responsive machinery is insufficient. Here we show by using immunoprecipitated kinase analysis with a phosphatidylinositol 3-kinase (PI3K) p85 antibody that PI3K activation was induced by treatment with 10 or 100 µM norepinephrine (NE) for 15 min or with 10 mM aluminum fluoride (AF, a guanosine triphosphate (GTP)-binding (G) protein activator) for 20 min in white adipocytes (rat epididymal adipocytes) and that treatment with pertussis toxin (PTX, a G-protein inactivator) inhibited PI3K activation induced by the 20-min treatment with AF in the cells. In addition, western blot analysis revealed that glucose transporter 4 (GLUT4) level in the adipocyte plasma membrane (PM) fraction was increased by treatment with 10 µM NE, 100 µM dobutamine (DOB, a ß1-AR agonist), or 0.1 µM CL316243 (CL, a ß3-AR agonist) for 30 min or with 10 mM AF for 20 min. NE or AF treatment triggered 2-deoxyglucose (2-DG) uptake into adipocytes under the above conditions. Our results advance the understanding of responses to adrenoceptor regulation in white adipocytes and provide possible clues for clarifying the machinery involved in adrenergic and ß-AR responses in the cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adipose cells induce phospho-Thr-172 AMPK production by epinephrine or CL316243 in mouse 3T3-L1 adipocytes or MAPK activation and G protein-associated PI3K responses induced by CL316243 or aluminum fluoride in rat white adipocytes.

Responses of adipose cells to adrenoceptor regulation, including that of β-adrenoceptor (AR), and the signalling machinery involved in these responses are not sufficiently understood; information that is helpful for elucidating the adrenoceptor (adrenergic and β-AR)-responsive machinery is insufficient. We examined phospho-Thr-172 AMPK production in mouse-derived 3T3-L1 adipocytes treated with ...

متن کامل

Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes.

Phosphatidylinositol 3-kinase (PI3K) activation is necessary for many insulin-induced metabolic and mitogenic responses. However, it is unclear whether PI3K activation is sufficient for any of these effects. To address this question we increased PI3K activity in differentiated 3T3-L1 adipocytes by adenovirus-mediated expression of both the inter-SH2 region of the regulatory p85 subunit of PI3K ...

متن کامل

Regulation of class IA PI3Ks: is there a role for monomeric PI3K subunits?

Class IA PI3Ks (phosphoinositide 3-kinases) consist of a p110 catalytic subunit bound to one of five regulatory subunits, known as p85s. Under unstimulated conditions, p85 stabilizes the labile p110 protein, while inhibiting its catalytic activity. Recruitment of the p85-p110 complex to receptors and adaptor proteins via the p85 SH2 (Src homology 2) domains alleviates this inhibition, leading t...

متن کامل

Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase.

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is deregulated in many human diseases including cancer, diabetes, obesity, and autoimmunity. PI3K consists of a p110 catalytic protein and a p85alpha regulatory protein, required for the stabilization and localization of p110-PI3K activity. The p110-PI3K enzyme generates the key signaling lipid phosphatidylinositol 3,4,5-trisphosphate, ...

متن کامل

The p85 and p110 subunits of phosphatidylinositol 3-kinase-alpha are substrates, in vitro, for a constitutively associated protein tyrosine kinase in platelets.

Phosphatidylinositol 3-kinase (PI3K) is a heterodimer lipid kinase consisting of an 85-kD subunit bound to a 110-kD catalytic subunit that also possesses intrinsic, Mn(2+)-dependent protein serine kinase activity capable of phosphorylating the 85-kD subunit. Here, we examine the Mn(2+)-dependent protein kinase activity of PI3K alpha immunoprecipitated from normal resting or thrombin-stimulated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiology international

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2016